# Happy Camp Biomass Supply & Feasibility Update Meeting

**Steve Courtney &** 

**Roy Anderson** 

**The Beck Group** 

503-684-3406

stevec@beckgroupconsulting.com

roya@beckgroupconsulting.com





# **The Beck Group**

- Forest products planning and consulting services
- More than 40 years in business; based in Portland, OR
- Services:
  - Feasibility studies
  - Small diameter tree utilization
  - Raw material supply & demand
  - Merger/acquisition due diligence

- Mill benchmarking
- Mass timber
- Expert witness
- Capital project planning

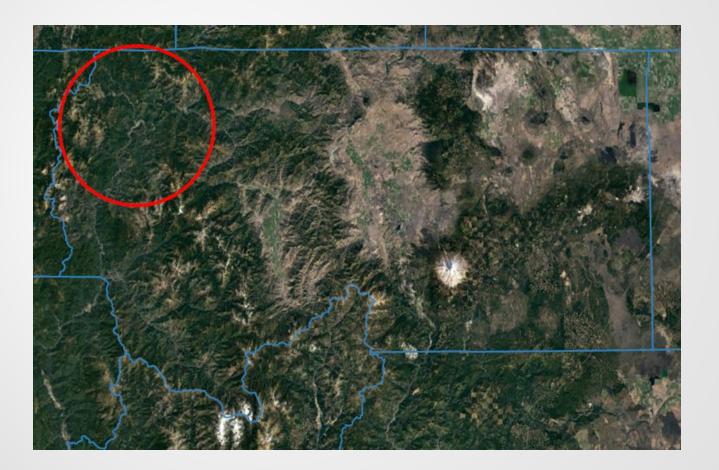


# **Biomass Utilization Feasibility Study Objectives**

1. Raw Material - Identify other/existing biomass users (if any) and know the net amount available per year, its characteristics, cost, etc.

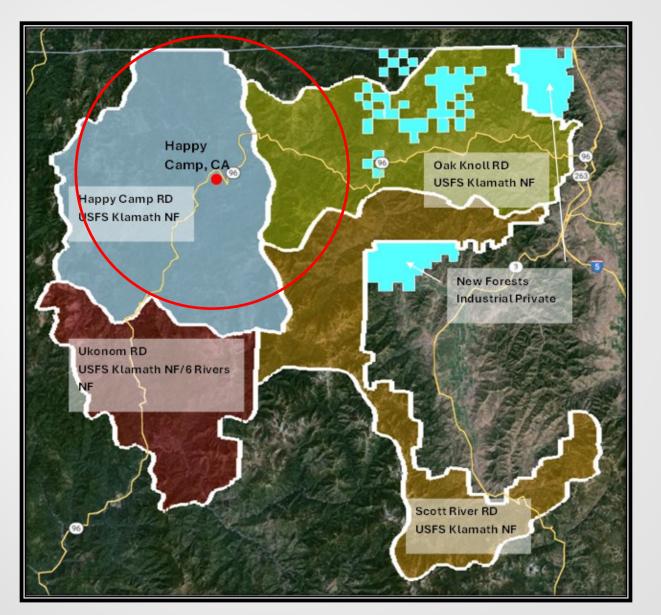
#### 2. What kind of biomass business?

- Develop screening criteria
- Use a business screening process to identify business type


3. Evaluate the likelihood of successfully developing a biomass utilization business

- Technical are there technical barriers?
- Financial can the business be profitable?
- Economic what are economic impacts?




# **Defining the Happy Camp Supply Area**

15-mile Radius Supply Circle Centered on Happy Camp, California





### **Supply Study:** Happy Camp Region





# **Timberland Ownership**

#### \*Timberland Ownership in 15-mile Radius of Happy Camp (Acres)

| County/<br>State     | National<br>Forest | Other<br>Federal | State<br>and Local | Private | Total   | % of Total |
|----------------------|--------------------|------------------|--------------------|---------|---------|------------|
| Del Norte County, CA | 6,580              | 0                | 0                  | 0       | 52,125  | 2.3%       |
| Siskiyou County, CA  | 274,727            | 0                | 0                  | 186     | 625,146 | 97.0%      |
| Josephine County, OR | 1,929              | 0                | 0                  | 0       | 212,194 | 0.7%       |
| Total Acres          | 283,285            | 0                | 0                  | 186     | 283,422 | 100.0%     |
| % of Total           | 99.9%              | 0.0%             | 0.0%               | 0.1%    | 100.0%  |            |

\*Timberland is land that can grow at least 20 cubic feet/acre/year and that has not been excluded from harvesting (i.e., does not include National Parks, Wilderness, etc.)

Happy Camp Jpdate Meeting



# Terminology

#### **Board Feet**

- 1 board foot of lumber = 1" x 12" x 12"
- Board Feet (log scale) = estimated board feet of lumber that can be produced from a log
- A log 32' long and 12" in diameter at the small end scales at 140 board feet
- Board feet of logs adds up quickly, so the industry convention is to refer to them in units of 1,000s, or MBF
- A truckload of logs will contain about 3,500 to 4,000 board feet

**Bone Dry Ton** 

- A volume of wood that weighs 2,000 pounds at zero percent moisture content
- If trees are live (green) when harvested, their weight is usually about 50% water
- Therefore, a rule of thumb is that the bone dry weight is ½ of the green weight.
- For example, 1 truckload of logs usually weighs about 25 green tons and 12.5 bone dry tons
- We used a conversion of 3.5 bone dry tons per MBF

(6)

# **Standing Timber Volume**

Standing Timber Volume in 15 Mile Radius Supply Area by Species (BDT in millions)

|               | Douglas-<br>fir | Pond.<br>Pine | True<br>Fir | Sugar<br>Pine | Incense<br>Cedar | Other<br>Sftwd. | Tan<br>Oak | Other<br>Hdwd. | Total |
|---------------|-----------------|---------------|-------------|---------------|------------------|-----------------|------------|----------------|-------|
| % of<br>Total | 64%             | 2%            | 20%         | 3%            | 2%               | 1%              | 2%         | 6%             | 100%  |
| Tons          | 2.37            | 0.07          | 0.76        | 0.13          | 0.06             | 0.02            | 0.08       | 0.21           | 3.72  |





### **Volume Harvested**

#### Historical Timber Annual Harvest Levels in Siskiyou County (2017 to 2022 MBF/Year)

| Year                         | Private &<br>Tribal | State | Forest Service | Other Public | Total   |
|------------------------------|---------------------|-------|----------------|--------------|---------|
| 2018                         | 180,756             | 0     | 66,954         | 0            | 247,709 |
| 2019                         | 163,973             | 0     | 46,669         | 0            | 210,642 |
| 2020                         | 136,201             | 0     | 31,251         | 0            | 167,452 |
| 2021                         | 166,424             | 0     | 36,564         | 0            | 202,988 |
| 2022                         | 126,246             | 0     | 47,336         | 0            | 173,581 |
| 20 Year<br>Annual<br>Average | 155,234             | 0     | 55,331         | 15           | 210,579 |
| 15-mile<br>Radius            |                     |       | 19,618         |              |         |

THE BECK GROUP

### **Volume Harvested**

#### **Species Percentage of Harvested Volume**

| Douglas-<br>fir | Ponderosa &<br>Jeffrey pine | True<br>fir | Oak | Total |
|-----------------|-----------------------------|-------------|-----|-------|
| 62%             | 17%                         | 20%         | 1%  | 100%  |

#### **Diameter Percentage of Harvested Volume**

| Diameter at<br>Breast<br>Height | 0"-7" | 8"-12" | 13"-19" | 20"+ | Total |
|---------------------------------|-------|--------|---------|------|-------|
| Percentage                      | 4%    | 22%    | 49%     | 25%  | 100%  |



#### **Volume Harvested**

#### Summary of Annual Sawtimber and Biomass Supply in the Happy Camp Region & \*Potential from Pre-Commercial Thinning (BDT/Year)

| Source Type              | MMBF per<br>Year | Total BDT per<br>Year | Available Portion<br>(BDT/Year) |
|--------------------------|------------------|-----------------------|---------------------------------|
| Baseline Sawtimber       | 19.6             | 68,600                | 10,500                          |
| Logging Slash            | n/a              | 9,300                 | 6,000                           |
| Topwood                  | 2.9              | 10,300                | 10,300                          |
| Historical Total         | 22.5             | 88,200                | 26,800                          |
| *Pre-commercial thinning |                  | 13,000                | 13,000                          |
| Potential Total          | 26.2             | 101,200               | 39,800                          |

### **Costs Associated with Harvest**

The total cost of removing biomass varies by operation type, tons per acre, tree size, slope, and time to travel to facilities.

#### Summary of Estimated Delivered Cost Ranges by Material Type (\$/BDT)

| Sav | logs f<br>wtimk<br>Trees | ber | Sawlogs from Topwood in<br>Hazard Trees Log Form |     | Small Diameter<br>Trees<br>in Log Form |    |    | Topwood in<br>Chip Form |    |     | Small Diameter<br>Trees<br>in Chip Form |     |    |     |     |     |     |
|-----|--------------------------|-----|--------------------------------------------------|-----|----------------------------------------|----|----|-------------------------|----|-----|-----------------------------------------|-----|----|-----|-----|-----|-----|
| Low | Hi                       | Avg | Low                                              | Hi  | Avg                                    |    | Hi | Avg                     |    | Hi  | Avg                                     | Low | Hi | Avg | Low |     | Avg |
| 35  | 115                      | 75  | 35                                               | 105 | 70                                     | 25 | 65 | 45                      | 80 | 180 | 130                                     | 38  | 72 | 55  | 78  | 172 | 125 |



# **Summary of Key Supply Related Points**

- Nearly 40,000 BDT/year of biomass and/or sawlogs could be available to a business in Happy Camp
- Roughly 25% of it is large diameter sawlogs, 60% is small diameter biomass, and 15% is logging slash
- Delivered costs are expected to range \$35 and \$180 per BDT depending on type of material
- That is enough annual volume to support a manufacturing operation in Happy Camp
- Virtually 100% of the timberland in the 15-mile radius supply area is USFS managed, therefore the USFS will be a key partner:
  - Explore opportunities for securing longer-term supply through contracting mechanisms
    - Stewardship, Good Neighbor Authority, etc.
  - Explore opportunities for collaboration with Karuk Tribe, MKWC, WKRP



# What Kind of Biomass Business for Happy Camp?

| Energy-Related                   | Traditional and/or<br>Engineered Wood Products | Other Miscellaneous<br>Products |
|----------------------------------|------------------------------------------------|---------------------------------|
| Biomass Combined<br>Heat & Power | Lumber<br>(Small, Specialty Sawmill)           | Animal<br>Bedding               |
| Bundled Firewood                 | Oriented Strandboard<br>(OSB)                  | Bark/Compost/Mulch              |
| Densified Fuel<br>Bricks/Logs    | Posts &<br>Poles                               | Biochar                         |
| Liquid<br>Biofuels               | Woodstraw                                      | Essential<br>Oils               |
| Wood<br>Pellets                  | Wood Wool<br>Cement                            | Wood Fiber<br>Insulation        |



# **Technology Screening Tool**

| Criteria Type     | Max Score | Criteria                                                                                                                                                                                                              |       |
|-------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Timing            | 6         | The business/technology can be constructed and operational within 18 to 24 months of receiving financing.                                                                                                             |       |
| Timing            | 6         | The business/technology has a high likelihood of successfully obtaining required permits, licenses, etc., and these can be obtained within 18 to 24 months of receiving financing.                                    |       |
| Timing            | 6         | The business/technology can utilize an existing site to help speed the development process and lower development costs.                                                                                               | J     |
| Raw Material      | 6         | The business/technology will utilize otherwise unused raw materials (i.e., there is limited competition with existing users, or it is or complementary to existing users).                                            |       |
| Raw Material      | 10        | Raw material security: Alternate source raw material (e.g., mill residuals) is not available to competitors at substantially lower cost.                                                                              |       |
| Raw Material      | 6         | The business/technology, in a single location, is scaled or can be expanded to utilize the amount of raw material harvestable in the supply region.                                                                   |       |
| Raw Material      | 6         | The business/technology does not require utilization of a specific tree species.                                                                                                                                      |       |
| Economics         | 14        | The business/technology economic structure is such that it can operate profitably (during most of an economic cycle) at the delivered raw material costs identified in the supply study.                              |       |
| Economics         | 4         | The business/technology is such that the capital costs relative to revenues and operating costs mean the developer can reasonably expect to have a 10-year or less payback period.                                    |       |
| Economics         | 14        | The business/technology must be able to demonstrate that there is a defined and supportable market segment for the product, with potential demand from multiple customers.                                            |       |
| Proven Technology | 16        | The business/technology proposed must have been successfully demonstrated in a commercial setting, at commercial scale, with similar raw material mix, for at least two years.                                        |       |
| Proven Technology | 6         | The business/technology equipment vendors must be able to offer commercial warranties as to performance, environmental compliance, and completion, and must be able to bond such warranty through commercial sources. |       |
| Grand Total       | 100       |                                                                                                                                                                                                                       | THEBE |

# **Technology Screening Tool - Results**

| <b>Biomass Utilization Technology</b> | Screening Score |
|---------------------------------------|-----------------|
| Lumber (Small, Specialty Sawmill)     | 92              |
| Wood Wool Cement                      | 88              |
| Bundled Firewood                      | 87              |
| Posts & Poles                         | 81              |
| Densified Fuel Bricks/Logs            | 70              |
| Animal Bedding                        | 70              |
| Oriented Strandboard (OSB)            | 69              |
| Bark/Compost/Mulch                    | 64              |
| Woodstraw                             | 61              |
| Wood Pellets                          | 58              |
| Biomass Combined Heat & Power         | 53              |
| Wood Fiber Insulation                 | 53              |
| Essential Oils                        | 52              |
| Biochar                               | 42              |
| Liquid Biofuels                       | 29              |





### **Biomass Power**

Biomass fuel > Boiler > Steam > Turbine > Power > Grid

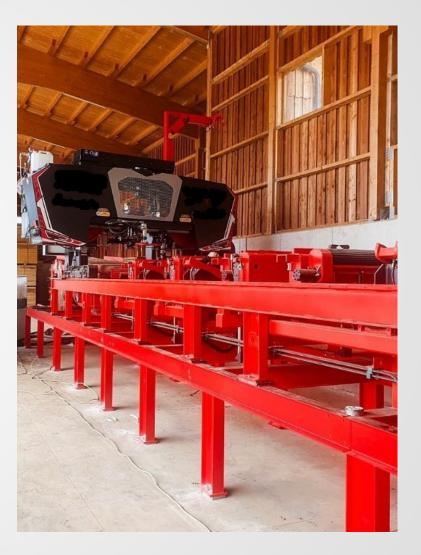
**Poor Economics** 

- 40,000 BDT of biomass ~ 5 MW of capacity
- 8,000hours/Year x 5 MW = 40,000 MWH/year of power produced
- Current renewable power market values \$45/MWH to \$50/MWH
- At those rates, annual power revenue = \$1.8 to \$2.0 million
- Additional ~\$500,000 for RECs and steam sales
- Total of \$2.5 million in revenue/year
- 5 MW plant Cap Ex ~\$35 million
- 1 MWH produced = 1 BDT of fuel consumed
- If fuel costs > \$50/BDT delivered the project is already underwater without accounting for other costs (labor, supplies, R&M, etc.) & amortization of loans

**Other Issues** 

- Potentially higher than normal Cap Ex to interconnect
- Need for licensed boiler operators (difficult in some remote towns)

### **Biochar**


- Biochar is used as a soil amendment, but little solid information available about the value landowners are willing to pay or size of the market
- Instead, revenue model for manufacturer is built on monetizing carbon credits per ton of biochar applied
- Credits can only be claimed after application is documented
- Other manufacturers produce biochar as a byproduct (Biomass One, White City, OR)
- Therefore, economics very unfavorable for an entity that must generate a revenue stream to cover all manufacturing costs





# **Small, Specialty Sawmill**

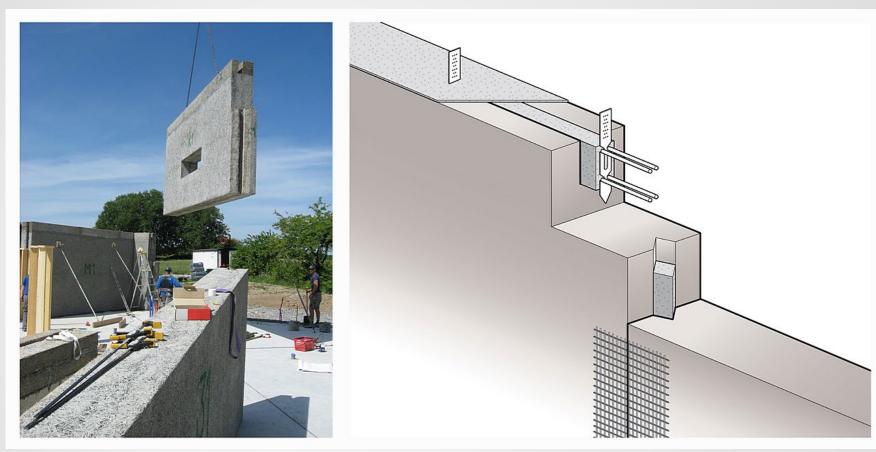
- Limited market for large diameter logs in Happy Camp region, so log supply is available
- Small scale mill cannot not be competitive manufacturing commodity products (stud & dimension lumber) because per unit costs are too high
- Can make high value products:
  - Special sizes (large beams)
  - Extra long lengths
  - Special products
  - Less common species





### **Wood Wool Cement**

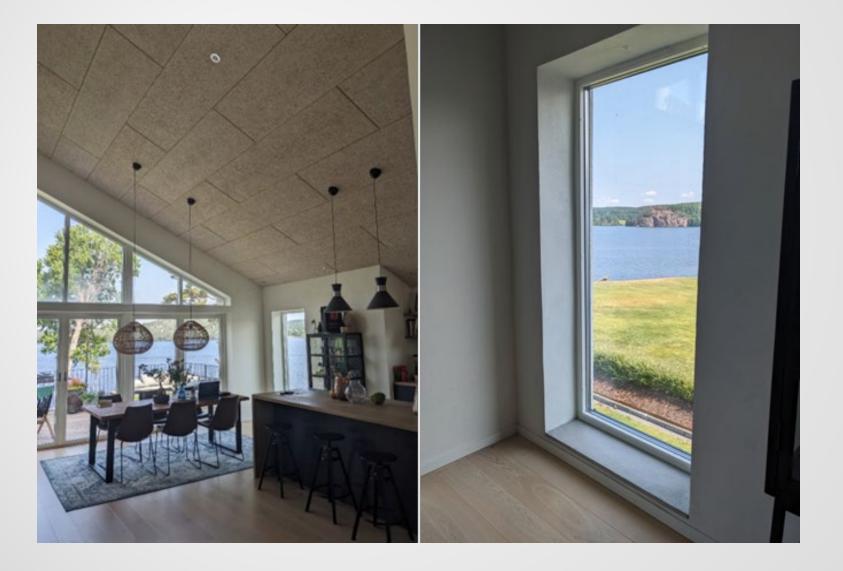
#### Wood Wool Cement


Small-diameter roundwood raw material (*on left*) is used to produce wood wool also known as excelsior (*center*), which is then mixed with Portland cement and an accelerant (to speed the rate of cement hydration) and formed into panels (*right*) that can be used in a variety of appearance and structural applications.








# Wood Wool Cement: Large Wall Element



- Fast building construction
- Carbon negative if low energy intensity cement is used
- Excellent thermal and acoustical properties
- Mold/fungus resistant
- Highly fire resistant



# Wood Wool Cement: Large Wall Element Finished Home





### **Wood Wool Cement: Considerations**

- Large Wall Elements have been used in Europe for decades and are now approved for use in buildings in Arizona and approval is pending in Portland, OR
- Eltomation (Netherlands) offers a turn-key wood wool cement plant
  - ~\$40 million Capital Expense
  - Consumes 12,500 BDT/Year
  - Produces about 4.2 million cubic feet of product/year
  - Requires about 35 hourly staff and ~5 salaried manager, sales, etc.
- That scale is likely too large for Happy Camp
- However, Single Widget (Portland Startup) is evaluating/planning a small-scale, low CapEx system that could produce enough material for about 20 homes per year to provide local, sustainable, fire-resistant housing. Single Widget is interested in Happy Camp as place to start pilot scale operation
- Grant support likely for planning/developing pilot plant
- Opportunity to ramp up after Pilot Scale level of:
  - Proving concept
  - Proving market

Happy Camp Jpdate Meeting

THE BECK GROL

### **Next Steps**

- 1. Complete feasibility analysis:
  - Small, specialty sawmill
  - Pilot scale wood wool cement
- **2.** Finalize written report:
  - Supply study
  - Technology screening
  - Feasibility analysis
  - Conclusions & recommended next steps



### **Questions/Discussion**

